

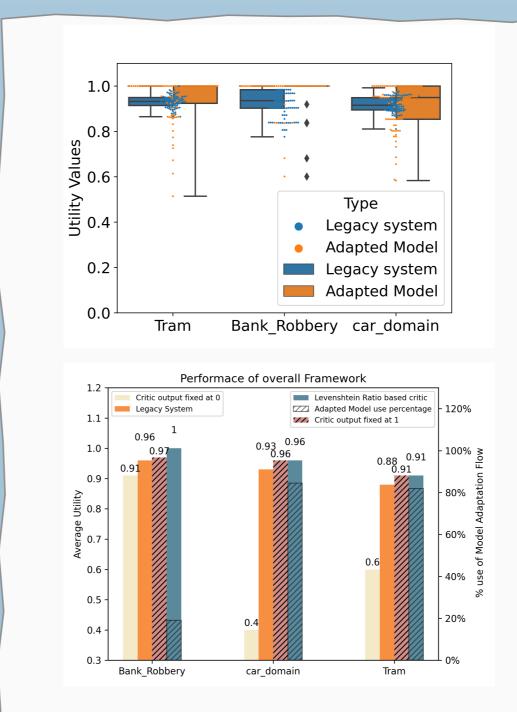
- Automated negotiation is a ubiquitous method for reaching agreement between industrial partners.
 - -In many relevant real-world scenarios, **negotiations repeat with** similar but not the same ufuns.
- Historical negotiation traces are becoming available due to the increased pace of digitalization specially due to the pandemic.
- We propose a framework for incrementally learning and adapting an end-to-end negotiation policy based on historical negotiation traces.
 - -We show that learning is **transferred** to related new situations.
 - The system adapts automatically to **changes in utility functions**.

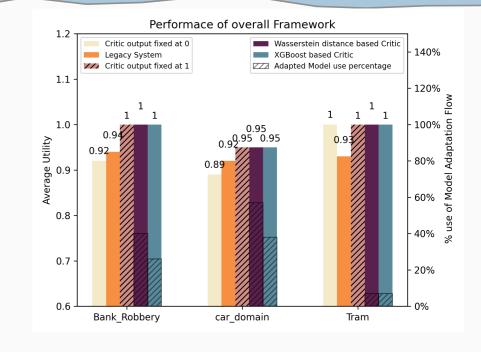
- Takes contextual information into account (e.g. season).
- Trains and adapts with few negotiation traces with no active opponent.
- Your best negotiator in \rightarrow higher performance out.

Proposed Framework

LegacySystem Top GENIUS Negotiator used for data collection during incremental improvement:

• Atlas3, YX, Ponpoko, NTfT, ParsCat.


BaseModel An LSTM used to learn the negotiation policy. **Critic** Decides when to adapt the BaseModel.


Base Model and Transfer Learning			
Base Model	Adapted Model		
Layer (type)		Layer (type)	
embedding (Embedding)		embedding (Embedding)	Retrained
bi_LSTM (Bidirectional)	Shared weights	<pre>bi_LSTM (Bidirectional)</pre>	
dropout (Dropout)		dropout (Dropout)	
dense (Dense)		dense (Dense)	Retrained
Total params: 51,040 Trainable params: 51,040 Non-trainable params: 0		Total params: 51,040 Trainable params: 26,640 Non-trainable params: 24	

- The BaseModel is trained using all available traces.
- Input and output encoding layers learn distances in the ufun space.
- A middle LSTM that *roughly* represents the strategy is not retrained.
- The Critic uses the LegacySytem to collect few (e.g. 10) extra traces when needed and triggers the transfer learning model.

Critic: Adaptation

- A binary classifier (Adapt?).
- Assumes either self or partner ufun can change.
- Uses the relative frequency of offers in the last few traces to decide wither the partner's ufun has changed.
- Trained using XGBoost with synthetic data.
 - -During cold-start, the Wasserstein distance with an apprpriate threshold is also effective.
- Can accomodate changes is self ufun:
 - -Uses Levenstein distance to measure the change between the new and old usure.

• Performance 6% \uparrow . • Ablation: Critic is effective. •XGBoost, Wasserstein disboth effective are tance but with different retraining rates.